Tue 27 Oct 2015 14:37 - 15:00 at Ellwood 1 - Session 3 Chair(s): Ryan Wisnesky

A seminal observation made by Wadler and Trinder and subsequently by Buneman and Wong in the early 1990s was that bulk types are monads, and therefore support a notation for database queries based on comprehensions. This observation formed the basis of Wong’s Kleisli language, and later Wadler’s Links language. The monadic structure explains most of standard relational algebra, allowing for an elegant mathematical foundation for those aspects of database query language design. Unfortunately, monads per se offer no explanation of cartesian product, and hence provide no foundations for the crucial aspect of relational joins. But the monadic structure of bulk types (like any monad) arises from one specific adjunction; in this extended abstract, we show that by paying due attention to other important adjunctions we can elegantly explain the rest of standard relational algebra, in a way that leads directly to an efficient implementation.

Tue 27 Oct
Times are displayed in time zone: (GMT-04:00) Eastern Time (US & Canada) change

13:30 - 15:00: DBPL - Session 3 at Ellwood 1
Chair(s): Ryan Wisnesky
dbpl201513:30 - 13:52
dbpl201513:52 - 14:15
Stefanie Scherzinger, Uta StörlHS Darmstadt, Meike KlettkeUniversität Rostock
dbpl201514:15 - 14:37
Leonard WörtelerUniversity of Konstanz, Michael GrossniklausUniversity of Konstanz, Christian GrünUniversity of Konstanz, Marc H. SchollUniversity of Konstanz
dbpl201514:37 - 15:00
Jeremy GibbonsUniversity of Oxford, UK, Fritz HengleinDIKU, Denmark, Ralf HinzeUniversity of Oxford, UK, Nicolas WuUniversity of Bristol, UK